Connections in CLT Assemblies

M. Mohammad

2011 UMass Wood Structures Symposium
Amherst, Massachusetts
September 8-9, 2011

Building Systems
Wood Products Division
Overview

- Importance of connections in CLT assemblies
- Common connection details/techniques in CLT assemblies: European experience
- Summary of recent research on CLT connections
- Proposed European approach for connections design in CLT
- Adoption of European approach in NA design procedure
- Concluding remarks
CLT Assemblies

- A series of prefabricated CLT panels connected together on site to form an assembly or a building
- Quick on-site erection due to
 - High degree of prefab.
 - Ease of assembly using conventional & innovative fasteners
Outcome...

Remarkable low, mid & high-rise timber buildings that are pushing the envelope..
Mixed CLT & Other Wood Based Products

Open Academy, Norwich, UK

Source: http://www.klhuk.com/media
Performance Demands in Timber Connections

- Easy to design
- Structurally efficient
- Fire resistant
- Aesthetically attractive
- Good serviceability (e.g., shrinkage, stiffness, acoustic)
- Cost-effective & availability
- Easy to assemble (i.e., do not require specialized tools or heavy equipments)

Competitiveness of a timber structure, relative to other building materials, may be determined by the efficiency of the connections, particularly for CLT assemblies
Why Connections are Important in CLT Assemblies?!

- Maintain structural integrity
- Provide ductility for lateral load design (e.g., seismic & wind)
- Affect the serviceability design (vibration, acoustics, etc.)
- May affect the fire safety design
- Interior and exterior finishing & building envelope
- Could control the level of prefab. at the mill
- Facilitate a quick assembly and disassembly (i.e., cost-competitiveness)
Current CLT Connections Practice in Europe

● Carpentry

Using CNC technology to create various types of interlocking profiles (Dovetail connections)

● Traditional Fasteners

Bearing or dowel type fasteners, i.e., nails, wood screws, lag screws & bolts, in combination with metal plates, brackets and ties.

● Innovative/Proprietary

Self-tapping/drilling screws & dowels, glued in rods, bearing-type systems, metal hooks, etc.
Wood and Self-Tapping Screws

- Extensively used in Europe
- Easy to install & provide high lateral & withdrawal capacity
- Come in a variety of sizes and features
 - Diameters from 4mm to 12mm
 - Lengths up to 600mm
- Do not require predrilling in most cases, (unlike traditional lag screws)
- Used for WW or WS connections
Traditional Fasteners in CLT

Nails and Rivets

- **Not as commonly used** as self tapping screws in CLT
- Nails with specific shank features such as **grooved** or **helically threaded nails** are the most commonly used
- Typically used in combination with metal plates and brackets
Why CLT is Different than Glulam?!

Cross Laminated Timber (CLT)

- Thick Orthotropic Plate

Glued Laminated Timber (GLT)

- Beam-like member
Why Connections in CLT are Different than those in Solid Timber or Glulam?!

Cross Lamination Effect

All laminates are aligned & loaded in the same direction..

Different layers are loaded @ different angles due to X-lamination.
Why Connections in CLT are Different than those in Solid Timber or Glulam?!

Moreover...

Presence of specific CLT panel features such as:

- Gaps in unglued X-laminates edges
- Artificially sawn grooves to relieve drying stresses

Not common to all CLT products as many products have edge-glued x-lamination
Does that Make Connections Design in CLT more Challenging?

Absolutely NOT!!

- CLT has a more favourable ability to resist splitting due to X-lamination (i.e., acts like reinforcement)

- However, need to take into account some of the specific features of panels at the design stage (e.g., unglued edges)
Connection Details in CLT Assemblies

Panel to Panel
(i.e., in wall, floor & roof assemblies)
CLT Panel to Panel Connection Details
Traditional Fasteners (Screws, Nails)

- **Single surface spline**
 - Plywood or LVL → Screws
 - CLT
 - CLT
 - Plywood or LVL
 - Screws

- **Half-lapped**
 - Plywood or LVL → Screws
 - CLT

- **Double surface spline**
 - Plywood or LVL → Screws
 - CLT
 - CLT
 - Screws

- **Single Internal spline**
 - Plywood or LVL
 - CLT
 - CLT

Source: G. Traetta
CLT Panel to Panel Connection Details
Traditional Fasteners (Screws, Nails)

Double internal spline

Source: Kevin Meechan
Courtesy WoodWorks
Innovative Systems for CLT Panel to Panel Connections

Tube connection system

- Glued or screwed rods
- Tube
- Nuts

Knapp® connection system

- Screws

(Source: Traetta & Schickhofer)
Connection Details in CLT Assemblies

CLT wall to concrete foundation
CLT Wall to Concrete Foundation

CLT wall to concrete wall or foundation slab using metal brackets or plates with anchor bolts & self tapping screws/lag bolts
CLT Wall to Foundation: Internal/concealed Metal Plates

CLT Wall → Tight fit dowels, SFS dowels or bolts → Metal plate → Anchor bolts → Concrete footing

CLT panel/post to concrete pedestal through metal brackets and internal metal plates
CLT Wall to Foundation Connection Details

Threaded rod/screw connection system

- CLT Wall
- Threaded rod
- Adaptor
- Anchor bolt
- Wood cap
- Concrete footing
Connection Details in CLT Assemblies

Wall to Wall
(i.e., exterior & interior walls intersections)
Wall to Wall Connections in CLT – Self Tapping Screws

Self tapping driven perp. to panel or @ an angle (Simplest form of connecting walls to walls)
Wall to Wall Connections in CLT – Metal Brackets

A combination of nails or self drilling screws and metal brackets
Wall to Wall Connections in CLT – Alternative/Innovative Systems

Dovetail connection system

CLT Wall → Dovetail joint with wooden or steel profiles → Screws

CLT Wall → Screws
Wall to Wall Connections in CLT – Alternative/Systems

Dovetail connection system

CLT Wall

Wood profile
(hard wood, LVL or plywood)

CLT Wall

Self-tapping screws

© 2009 FPInnovations. All rights reserved.
Copying and redistribution prohibited.
Wall to Wall Connections in CLT – Alternative/Innovative Systems

Knapp® connection system
Connection Details in CLT Assemblies

Wall to Floor/Roof
Platform or Balloon type
CLT Wall to Floor/Roof Connection Details - Platform

Most commonly used connection system in CLT assemblies in Europe
CLT Wall to Floor/Roof Connections: Platform

Use of self-tapping screws (Simplest form of connection)

Special attention should be paid in driving screws on edge as they may penetrate through end grain

Source: TRADA
CLT Wall to Floor/Roof: Combination of Several Systems

1st storey wall to floor/roof → self tapping screws

2nd storey wall to floor → combination of metal brackets and nails or screws
CLT Wall to Floor/Roof Connections - Alternative / Innovative Systems

Innovative long threaded rod with adopters

Source: SFSIntec
CLT Wall to Floor/Roof Connections - Alternative Systems

Inserted/concealed metal plates with self drilling dowels or traditional dowels and screws

Source: M. Augustin /ITE
CLT Wall to Floor/Roof Connections – Alternative Systems

Glued-in rods

CLT Wall

Wood profile
(hard wood, LVL or plywood)

Glued-in rod

Nut

CLT Floor

Clips

Nut

Glued-in rod

Wood profile
(hard wood, LVL or plywood)

CLT Wall

Self-tapping screws

Self-tapping screws
CLT Wall to Floor/Roof Connections- Balloon Type

Use of EWP ledger with lag or self tapping screws (e.g., mezzanine, wall parapets, etc.)

Metal bracket with lag or self tapping screws
Mixed CLT with other Wood-Based Systems (Hybrid Systems): CLT Wall & I-Joisted Floor

- CLT Wall
- Self-tapping screws
- Continuous ring beam
- Screws
- Decking
- Blocking between joists
- Joist
- CLT Wall screwed through decking into blocking

CLT Wall & I-joisted floor with EWP rim board and blocking. Self tapping screws are used

Adopted from TRADA
Mixed CLT with other Wood Based Systems (Hybrid Systems): CLT Walls & Metal Plated Floor Truss

CLT Wall & metal plated floor trusses. Self tapping screws are used

Adopted from TRADA
Fastener driven perp. to the CLT panel
Different positions relative to edge gaps between lamina:

- Not an issue for slender fasteners
- May need to consider in design of large diameter fasteners (i.e., bolts, dowels)
Fastener Driven on Edge…….. Challenges and Complications…

Small fasteners
\(d \leq \text{lamina thickness} \)

Some possible scenarios..

Large fastener
\(d > \text{lamina thickness} \)
Research on CLT Connections – European Experience

- Extensive research in Germany, Austria & Norway on performance of traditional fasteners in CLT:
 - Different loading directions 0°, 45°, 90° relative to outer layer
 - Different positions relative to edge gaps between lamina
 - Different types of fasteners
 - Long term connection tests

 (Uibel & Blass 2006, 2007) (Traetta 2007)

- A simplified calculation methodology developed to establish the fastening capacity with screws, nails and dowels based on the embedment strength

 (Uibel & Blass 2006, 2007)
Behavior of Connections in CLT: European Tests

5-layered CLT to steel connections: Comparison with glulam

High ductility

Source: Traetta 2007
Half-lapped (step) joint

Self tapping screws

Single Spline joint

Wood screws

-Lateral and withdrawal tests using European CLT
- Screws in CLT with 2 panel-to-panel profiles
Seismic performance of CLT walls is governed by connections.
Design concepts developed.. Testing is underway..

Concept 1: Bearing washer (Prototype)

Capitalize on the high bearing resistance of wood
Development of Innovative Connection Systems Concepts in CLT @ FPInnovations

Adopting CNC technology & allowing for quick assembly/disassembly

Reduce to steel-to-steel connections
Proposed European Design Approach for Connections in CLT

Laterally Loaded Dowel-type Fasteners

- Establish the embedment strength for each type of fasteners in CLT (in plane & on edge) – Empirically.

- Use the embedment eqs. in EC5 (EYM) to determine the resistance of connections (i.e., similar to those used for solid timber/glulam)

- Min. spacing & edge and end distances are specified to minimize brittle failure mode in CLT

Withdrawal Resistance

- Derive withdrawal resistance eqs. empirically by tests.
Proposed Calculation Methodology for Embedment Strength – Europe Over 1300 Tests

Nails & Screws – Generalized Approach

Perp. To Plane

\[f_{h,k} = 0.112 d^{-0.5} \rho_k^{1.05} \quad (N / mm^2) \]

On Edge

\[f_{h,k} = 0.862 d^{-0.5} \rho_{ply,k}^{0.56} \quad (N / mm^2) \]

Validity

- Nails: 4.2mm, Screws: 6, 8 & 12mm
- ≤ 7mm thick lamina

Independent of loading direction relative to outer layer
Proposed Empirical Models for Characteristic Embedment Strength - Europe

Bolts & Dowels

Perp. To Plane

\[
f_{h,k} = \frac{0.031(1-0.015d) \rho_k^{1.16}}{1.1 \sin^2 \alpha + \cos^2 \alpha} \quad (N/\text{mm}^2)
\]

- Independent of panel build-up, but function of loading direction relative to outer layer

On Edge

\[
f_{h,k} = 0.0435(1-0.017d) \rho_{\text{ply,k}}^{0.91} \quad (N/\text{mm}^2)
\]

Validity

- 40mm thick lamina or less
- \(0.94 < t_1/t_2 < 2.1\)
- Min. penetration 3 layers

Driven Perp. to Plane or on Edge

\[
R_{ax,s,k} = \frac{0.35 \, d^{0.8} \, l_{ef}^{0.9} \, \rho_k^{0.75}}{1.5 \, \cos^2 \epsilon + \sin^2 \epsilon} \quad (N)
\]

Where
- \(\epsilon \) = angle between screw axis and CLT grain direction
- \(\rho_k \) = density of CLT panel (fasteners driven perp. to the plane of the panel); Or density of relevant layers (fasteners driven on edge)

Validity

Withdrawal resistance in solid wood exceeds

\[
f_{ax,k} = 80 \, \rho_k^2 \times 10^{-6} \quad (N / mm^2)
\]
Min. End & Edge Distances & Spacings in CLT Panel Plane for Dowel-type (*Annex J of CEN Draft*)
Min. End & Edge Distances & Spacings in CLT Plane side *(Annex J of CEN CLT Draft)*

<table>
<thead>
<tr>
<th>Fastener</th>
<th>$a_{1,t}$</th>
<th>$a_{1,c}$</th>
<th>a_{1}</th>
<th>$a_{2,t}$</th>
<th>$a_{2,c}$</th>
<th>a_{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-tapping screws</td>
<td>$6 , d$</td>
<td>$6 , d$</td>
<td>$4 , d$</td>
<td>$6 , d$</td>
<td>$2,5 , d$</td>
<td>$2,5 , d$</td>
</tr>
<tr>
<td>nails</td>
<td>$(7 + 3 \cdot \cos \alpha) , d$</td>
<td>$6 , d$</td>
<td>$(3 + 3 \cos \alpha) , d$</td>
<td>$(3 + 4 \cdot \sin \alpha) , d$</td>
<td>$3 , d$</td>
<td>$3 , d$</td>
</tr>
<tr>
<td>dowels</td>
<td>$5 , d$</td>
<td>$(3 + 2 \cos \alpha) , d$</td>
<td>$3 , d$</td>
<td>$3 , d$</td>
<td>$3 , d$</td>
<td></td>
</tr>
<tr>
<td>bolts</td>
<td>$5 , d$</td>
<td>$4 , d$</td>
<td>$3 , d$</td>
<td>$3 , d$</td>
<td>$4 , d$</td>
<td></td>
</tr>
</tbody>
</table>
Placement of Fasteners in CLT Joints
(Narrow Side - Annex J of CEN CLT Draft)

Recommended min. end & edge distances and spacings for dowel-type fasteners

(Adopted from Uibel and Blass 2007 & Annex J of CEN CLT Standard)

<table>
<thead>
<tr>
<th>Fastener</th>
<th>$a_{1,t}$</th>
<th>$a_{1,c}$</th>
<th>a_1 (In plane)</th>
<th>$a_{2,c}$</th>
<th>a_2 (Perp. to plane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-tapping screws</td>
<td>12 d</td>
<td>7 d</td>
<td>10 d</td>
<td>5 d</td>
<td>3 d</td>
</tr>
<tr>
<td>Dowels</td>
<td>5 d</td>
<td>3 d</td>
<td>4 d</td>
<td>3 d</td>
<td>3 d</td>
</tr>
<tr>
<td>Bolts</td>
<td>5 d</td>
<td>4 d</td>
<td>4 d</td>
<td>3 d</td>
<td>4 d</td>
</tr>
</tbody>
</table>
Current design roles in CSA O86-09 for dowel-type fasteners in solid wood and glulam cover:

- Nails & spikes
- Wood screws (up to ¼” in CSA O86)
- Lag screws
- Bolts & dowels
- Drift pins
- Timber rivets
- Self tapping screws?! Not yet!!

No guidance is given on joints made with proprietary self-tapping screws.. typically used in Europe for CLT connections
Based on limited verification testing & analysis @ FPInnovations, European design approach could be adopted in the NDS & CSA O86 provided that:

- **Brittle failure** modes are established in CLT (e.g., large diameters or closely spaced fasteners)
- Min. spacing and edge & end distances are specified as per NA standards
Current & Planned Research Activities on CLT Connections @ FPInnovations & Partners

Joint FPInnovations and Universities Research under Federal and Provincial programs:

- To investigate connections performance in CLT and develop technical information to support the development of design procedure

- Ultimately, introduce design provisions for connections in NA timber design standards (i.e., CSA O86, NDS)
In detailing Connections in CLT, other performance attributes need to be addressed:

- Fire performance
- Acoustic & vibration
- Differential shrinkage
- Building envelope and durability
- Etc.

Need a Multi-disciplinary Approach
Detailing of Connections in CLT

Important!!

Ensure tight fit between individual CLT panels!!

This is **Key** for:

- Structural integrity
- Improved fire resistance
- Sound insulation
- Air tightness

Source: Kevin Meechan
Courtesy WoodWorks
In Summary

- European experience and R&D activities and test results @ FPInnovations & elsewhere indicate that traditional connections in CLT are:
 - Simple
 - Structurally efficient
 - Cost-competitive

- Proposed European design methodology could be adopted in NA. However, need to account for potential CLT brittle failure modes & panel specific features

- Need to introduce self-tapping screws and CLT in NA timber standards to assist designers